Computer Vision: Sliding-Window based Object Detection (Do, 27.11.2014)

Anmeldung erforderlich

RWTH

Für RWTH-Angehörige und aus dem RWTH-Netz verfügbar

Anmelden
  • Einbetten

Beschreibung:

Singular Vector Decomposition (SVD), SVM, HOG-Detector

Kapitel:

00:00:00
Lecture 10: Sliding-Wnidow based Object Detection
00:00:06
Course Outline
00:01:13
Recap: Subspace Methods
00:02:18
Recap: Obj. Detection by Distance TO Eigenspace
00:04:59
Recap: Obj. Detection by Distance IN Eigenspace
00:07:45
Recap: Eigenfaces
00:09:27
Recap: Obj. Detection by Distance TO Eigenspace
00:11:04
Important Footnote
00:13:08
Singular Value Decomposition (SVD)
00:15:25
Performing PCA with SVD
00:18:24
SVD Properties
00:21:29
Limitations (1)
00:22:42
Limitations (2)
00:24:01
Restrictions of PCA
00:29:49
Topics of This Lecture
00:31:11
Identification vs. Categorization (1)
00:34:04
Identification vs. Categorization (2)
00:35:09
Object Categorization - Potential Applications
00:35:54
How many object categories are there?
00:37:19
~10,000 to 30,000
00:38:42
Challenges: Robustness (1)
00:39:45
Challenges: Robustness (2)
00:40:38
Topics of This Lecture
00:41:02
Detection via Classification: Main Idea (1)
00:41:50
Detection via Classification: Main Idea (2)
00:44:18
What is a Sliding Window Approach?
00:45:46
Detection via Classification: Main Idea (3)
00:47:22
Feature extraction: Global Appearance
00:50:11
Eigenfaces: Global Appearance Description
00:50:41
Feature Extraction: Global Appearance
00:52:34
Gradient-based Representations
00:53:36
Gradient-based Representations: histogram
00:56:25
Gradient-based Representations: Histograms of Oriented Gradients (HoG)
00:56:57
Classifier Construction
00:58:24
Discriminative Methods
00:59:10
Classifier Construction: Many Choices...
01:00:39
Linear Classifiers (1)
01:02:56
Linear Classifiers (2)
01:05:54
Support Vector Machines (SVMs)
01:07:00
Support Vector Machines: margin
01:11:46
Finding the Maximum Margin Line
01:14:18
Questions
01:14:45
Non-Linear SVMs: Feature Spaces
01:18:38
Nonlinear SVMs
01:19:10
Some Often-Used Kernel Functions
01:19:59
Questions
01:20:02
Multi-Class SVMs
01:20:05
SVMs for Recognition
01:21:35
Pedestrian Detection
01:21:50
HOG Descriptor Processing Chain
01:22:13
HOG Descriptor Processing Chain: Gamma compression
01:22:46
HOG Descriptor Processing Chain: Gradient computation
01:23:17
HOG Descriptor Processing Chain: Spatial/Orientation binning
01:23:47
HOG Cell Computation Details
01:25:21
HOG Cell Computation Details (2)
01:27:05
HOG Descriptor Processing Chain: 2-Stage contrast normalization
01:28:05
HOG Descriptor Processing Chain: Feature vector construction
01:28:16
HOG Descriptor Processing Chain: SVM Classification
01:28:53
Pedestrian Detection with HOG
01:29:30
Non-Maximum Suppression
01:30:22
Pedestrian detection with HoGs & SVMs
01:31:44
References and Further Reading